Minimal Positive Stencils in Meshfree Finite Difference Methods for the Poisson Equation
نویسنده
چکیده
Meshfree finite difference methods for the Poisson equation approximate the Laplace operator on a point cloud. Desirable are positive stencils, i.e. all neighbor entries are of the same sign. Classical least squares approaches yield large stencils that are in general not positive. We present an approach that yields stencils of minimal size, which are positive. We provide conditions on the point cloud geometry, so that positive stencils always exist. The new discretization method is compared to least squares approaches.
منابع مشابه
Adaptive meshless centres and RBF stencils for Poisson equation
We consider adaptive meshless discretisation of the Dirichlet problem for Poisson equation based on numerical differentiation stencils obtained with the help of radial basis functions. New meshless stencil selection and adaptive refinement algorithms are proposed in 2D. Numerical experiments show that the accuracy of the solution is comparable with, and often better than that achieved by the me...
متن کاملساختن روشهای تفاضلات متناهی مبتنی بر توابع پایه شعاعی و استفاده از آنها برای حل معادلات دیفرانسیل با هندسه دلخواه
In this paper we, obtain the weight of radial basis finite difference formula for some differential operators. These weights are used to obtain the local truncation error in powers of the inter-node distance and the shape parameter of radial basis functions. We show that for each difference formula, there is a value of the shape parameter for which RBF-FD formulas are more accurate than the cor...
متن کاملSemiconductor Device Simulation by a New Method of Solving Poisson, Laplace and Schrodinger Equations (RESEARCH NOTE)
In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as Poisson, Lap lace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in sever...
متن کاملThe Method of Fundamental Solutions with Eigenfunction Expansion Method for Nonhomogeneous Diffusion Equation
In this article we describe a numerical method to solve a nonhomogeneous diffusion equation with arbitrary geometry by combining the method of fundamental solutions (MFS), the method of particular solutions (MPS), and the eigenfunction expansion method (EEM). This forms a meshless numerical scheme of the MFS-MPS-EEM model to solve nonhomogeneous diffusion equations with time-independent source ...
متن کاملHigh order finite difference algorithms for solving the Schrödinger equation in molecular dynamics. II. Periodic variables
Variable high order finite difference methods are applied to calculate the action of molecular Hamiltonians on the wave function using centered equi-spaced stencils, mixed centered and one-sided stencils, and periodic Chebyshev and Legendre grids for the angular variables. Results from one-dimensional model Hamiltonians and the three-dimensional spectroscopic potential of SO2 demonstrate that a...
متن کامل